Microbial sieving effects on vertical differentiation of nutrient availability

Along forest succession stages, soil nutrient status always presents vertical stratification along soil horizons. Researchers have suggested that the microbiomes play a pivotal role in the allocation of decomposed organic matter across the top organic matter layer and subsoil horizons in forest ecosystems.


To test this idea, Bai Zhen from the Institute of Applied Ecology of the Chinese Academy of Sciences, together with his colleagues, investigated the carbon (C) and nitrogen (N) contents, extracellular enzyme activities, and microbial dimensions (e.g., specialization, abundance, and diversity) in different soil horizons along a temperate forest succession gradient.


They found that the early-stage organic matter layer was characterized by high substrate quality, extracellular enzyme activities, as well as highly diversified and exploitative traits (e.g., high richness and diversity, a powerful ability to mobilize easily available nutrients). However, the O-horizon lost such copiotrophic life strategies along with forest succession, i.e., presenting the age-related increase in C/N ratios but decreases in nitrogen contents, enzyme activities, and microbial richness.


In the subsoil horizons, however, the substrate quality, extracellular enzyme activities, and microbial richness were either lowest at the middle succession stage or showed an increasing trend between the middle and later stages.


The nitrogen content, in particular, showed an age-related decline at the top organic matter layer; however, the nitrogen content varied little at the upper subsoil horizon and even significantly increased at the lower subsoil horizon across forest succession stages.


The results reveal top-down sieving processes, i.e., depth-dependent nutrient availability is first dependent on the substrate preference of microbial communities at the organic matter layer and is then determined by microbial adaptations to the corresponding translocation of decomposition products at subsoil horizons.


Their work was published online in Catena, titled Soil depth-dependent C/N stoichiometry and fungal and bacterial communities along a temperate forest succession gradient.


Journal Information: Zhen Bai et al, Soil depth-dependent C/N stoichiometry and fungal and bacterial communities along a temperate forest succession gradient, CATENA (2021). DOI: 10.1016/j.catena.2021.105613

1 view0 comments

Recent Posts

See All

Streaming video giant Netflix has decided to cut 150 jobs after releasing disappointing first-quarter results, citing "slower revenue growth

Before Elon Musk completed his acquisition deal, three more senior employees left Twitter. Currently, the acquisition has stalled. Twitter V