Researchers obtain new results on corrosion behavior of alloy materials under extreme environments


Fig. 1. Schematic diagram of the high temperature and high pressure water dynamic corrosion device. Credit: LIU Chao
Fig. 1. Schematic diagram of the high temperature and high pressure water dynamic corrosion device. Credit: LIU Chao
 

The service behavior of materials under extreme environments is one of the bottlenecks restricting the development of advanced nuclear energy systems. Researchers at the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS) have lately obtained new results on the corrosion behavior of alloy materials under strong irradiation, high temperature, and coolant corrosive environments.


To simulate the environment faced by the structural materials of supercritical water-cooled reactors, the researchers have independently designed and built a high temperature and high-pressure water dynamic corrosion test device, whose maximum operating temperature, pressure, and water flow rate are respectively 700 degrees Celsius, 10 MPa and 10 m/s, and minimum oxygen concentration is 5 ppb.


Ferrite-martensitic steels SIMP and T91 are proposed as candidate materials for the supercritical water-cooled reactor. Researchers studied both the high-temperature water corrosion kinetics and the corrosion behavior of SIMP and T91 under irradiation by using the Heavy Ion Research Facility in Lanzhou and the high temperature and high-pressure water dynamic corrosion device.


It is found that SIMP steel has better water corrosion resistance than T91 steel. The corrosion rate is enhanced by the flow rate, which also has a significant effect on the phase of the oxide film.


The results of heavy-ion pre-irradiation experiments confirm that irradiation causes a significant increase in the corrosion rate of materials. According to the experimental results, the researchers also discussed the high-temperature water corrosion behavior of the material and the mechanism of corrosion resistance degradation under irradiation.


These achievements provide not only an important research platform but also experimental methods for the rapid screening and evaluation of candidate materials for advanced water-cooled reactors. Results have been published in Corrosion Science.

2 views0 comments

Recent Posts

See All

Streaming video giant Netflix has decided to cut 150 jobs after releasing disappointing first-quarter results, citing "slower revenue growth

Before Elon Musk completed his acquisition deal, three more senior employees left Twitter. Currently, the acquisition has stalled. Twitter V