Wormholes may be lurking in the universe shows new study


In a new paper, published in the Monthly Notices of the Royal Society, Russian astronomers suggest they may exist at the center of some very bright galaxies, and propose some observations to find them. This is based on what would happen if matter coming out of one side of the wormhole collided with matter that was falling in. The calculations show that the crash would result in a spectacular display of gamma rays that we could try to observe with telescopes. This radiation could be the key to differentiating between a wormhole and a black hole, previously assumed to be indistinguishable from the outside. But black holes should produce fewer gamma rays and eject them in a jet, while radiation produced via a wormhole would be confined to a giant sphere. Although the kind of wormhole considered in this study is traversable, it would not make for a pleasant trip. Because it would be so close to the center of an active galaxy, the high temperatures would burn everything to a crisp. But this wouldn't be the case for all wormholes, such as those further from the galactic center. The idea that galaxies can harbor wormholes at their centers is not new. Take the case of the supermassive black hole at the heart of the Milky Way. This was discovered by painstakingly tracking of the orbits of the stars near the black hole, a major achievement which was awarded the Nobel Prize in Physics in 2020. But one recent paper has suggested this gravitational pull may instead be caused by a wormhole. Unlike a black hole, a wormhole may leak some gravity from the objects located on the other side. This spooky gravitational action would add a tiny kick to the motions of stars near the galactic center. According to this study, the specific effect should be measurable in observations in the near future, once the sensitivity of our instruments gets a little bit more advanced. Coincidentally, yet another recent study has reported the discovery of some odd radio circles in the sky. These circles are strange because they are enormous and yet not associated with any visible object. For now, they defy any conventional explanation, so wormholes have been advanced as a possible cause. Wormholes hold a strong grip on our collective imagination. In a way, they are a delightful form of escapism. Unlike black holes which are a bit frightening as they trap everything that ventures in, wormholes may allow us to travel to faraway places faster than the speed of light. They may in fact even be time machines, providing a way to travel backwards as suggested by the late Stephen Hawking in his final book. Wormholes also crop up in quantum physics, which rules the world of atoms and particles. According to quantum mechanics, particles can pop out of empty space, only to disappear a moment later. This has been seen in countless experiments. And if particles can be created, why not wormholes? Physicists believe wormholes may have formed in the early universe from a foam of quantum particles popping in and out of existence. Some of these "primordial wormholes" may still be around today. Recent experiments on quantum tel exportation a disembodied transfer of quantum information from one location to another have turned out to work in an eerily similar way to two black holes connected through a wormhole. These experiments appear to solve the quantum information paradox"m, which suggests physical information could permanently disappear in a black hole. But they also reveal a deep connection between the notoriously incompatible theories of quantum physics and gravity with wormholes being relevant to both which may be instrumental in the construction of a theory of everything. The fact that wormholes play a role in these fascinating developments is unlikely to go unnoticed. We may not have seen them, but they could certainly be out there. They may even help us understand some of the deepest cosmic mysteries, such as whether our universe is the only one.

2 views0 comments

Recent Posts

See All